Do freeze-thaw events enhance C andN losses from soils of different ecosystems? A review

نویسنده

  • E. MATZNER
چکیده

Freezing and thawing of soils may affect the turnover of soil organic matter and thus the losses of C and N from soils. Here we review the literature with special focus on: (i) the mechanisms involved, (ii) the effects of freezing temperature and frequency, (iii) the differences between arable soils and soils under natural vegetation, and (iv) the hypothesis that freeze-thaw events lead to significant C and N losses from soils at the annual scale. Changes in microbial biomass and populations, root turnover and soil structure might explain increased gaseous and solute fluxes of C and N following freeze-thaw events, but these mechanisms have seldom been addressed in detail. Effects of freeze-thaw events appear to increase with colder frost temperatures below 0°C, but a threshold value for specific soils and processes cannot be defined. The pool of C and N susceptible to freeze-thaw events is rather limited, as indicated by decreasing losses with shortterm repeated events. Elevated nitrate losses from soils under alpine and/or arctic and forest vegetation occurred only in the year following exceptional soil frost, with greatest reported losses of about 13 kg N ha . Nitrate losses are more likely caused by reduced root uptake rather than by increased N net mineralization. N2O emissions from forest soils often increased after thawing, but this lasted only for a relatively short time (days to 1–2 months), with the greatest reported cumulative N2O emissions of about 2 kg N2O-N ha . The emissions of N2O after freeze-thaw events were in some cases substantially greater from arable soils than from forest soils. Thus, freeze-thaw events might induce gaseous and/or solute losses of N from soils that are relevant at the annual time scale. While a burst of CO2 after thawing of frozen soils is often found, there is strong evidence that, at the annual time scale, freeze-thaw cycles either have little effect or will even reduce soil C losses as compared with unfrozen conditions. On the contrary, a milder winter climate with fewer periods of soil frost may result in greater losses of C from soils that are presently influenced by extended frost periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.

The effects of freeze-thaw events on the inactivation of Cryptosporidium parvum oocysts in soil were examined. Oocysts were inoculated into distilled water in microcentrifuge tubes or into chambers containing soil the water content of which was maintained at 3%, 43%, or 78% of the container capacity. The chambers and tubes were then embedded in 3 soil samples from different aspects of a hillsid...

متن کامل

Enchytraeus albidus (Henle 1837), which inhabits shorelines and organically rich soils of northern Europe, Greenland and Svalbard. Enchytraeus albidus remains near the surface of soils and in rotting

3843 ABSTRACT Freeze-tolerant organisms survive internal ice formation; however, the adaptations to repeated freeze–thaw cycles are often not well investigated. Here we report how three geographically different populations of Enchytraeus albidus (Germany, Iceland and Svalbard) respond to three temperature treatments – constant thawed (0°C), constant freezing (−5°C) and fluctuating temperature (...

متن کامل

Strength Characteristics of Clay Mixtures with Waste Materials in Freeze-Thaw Cycles

Waste tires, rubbers, plastic and steel materials, normally produced in every society, enter the environment and cause serious problems. These problems may, to some extent, be reduced by finding applications for them in engineering, for example, they can be used for geotechnical applications as backfill material and solving problems with low shear strength soils. Such materials may be subjected...

متن کامل

Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils.

Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum...

متن کامل

Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use

BACKGROUND The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are ess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008